Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shi-Guo Zhang, ${ }^{\text {a }}$ Wei-Nan Li ${ }^{\text {b }}$ and Jing-Min Shi ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Department of Chemistry and Chemical Engineering, Institute of Material Chemistry, Binzhou University, Binzhou 256603, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China

Correspondence e-mail:
shijingmin@beelink.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.014 \AA$
R factor $=0.068$
$w R$ factor $=0.153$
Data-to-parameter ratio $=15.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
$\operatorname{Bis}\left(\mu\right.$-4-methoxypyridine N-oxide- $\left.\kappa^{2} O: O\right)$ bis[dibromocopper(II)]

In the binuclear centrosymmetric title compound, $\left[\mathrm{Cu}_{2} \mathrm{Br}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}_{2}\right)_{2}\right]$, two 4-methoxypyridine N-oxide ligands bridge two Cu atoms, conferring a square-planar geometry on Cu . Hydrogen bonds of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ type lead to the formation of a sheet structure.

Comment

Aromatic N-oxides are useful bridging ligands and a large number of multinuclear complexes have these ligands exhibiting this feature. Some have magnetic coupling properties (Watson, 1969). As we have previously synthesized complexes with pyridine N-oxide and its derivatives (Shi et al., 2006), our studies continue with the title centrosymmetric binuclear copper complex, (I) (Fig. 1).

(I)

The Cu atom of (I) assumes a square-planar geometry. The two 4-methoxypyridine N-oxide ligands function as bridging ligands. The $\mathrm{Cu} \cdots \mathrm{Cu}$ distance is 3.251 (2) \AA. Atom Cu 1 lies within the square plane and the maximum deviation is 0.104 (5) A for atom Br2. The compound may show magnetic interaction (magnetic exchange or magnetic coupling), as noted from the angle at the bridging O atom (Nepveu et al., 1986).

Non-classical hydrogen bonds (Table 2) lead to the formation of a sheet parallel to the $b c$ plane.

Received 30 October 2006 Accepted 30 October 2006

Experimental

4-Methoxypyridine N-oxide ($0.1165 \mathrm{~g}, 0.931 \mathrm{mmol}$) in water (15 ml) was added to an aqueous solution $(10 \mathrm{ml})$ of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $(0.3461 \mathrm{~g}, 0.934 \mathrm{mmol})$ and $\mathrm{NaBr}(0.1918 \mathrm{~g}, 1.86 \mathrm{mmol})$. The solution was stirred for a few minutes. Red single crystals of (I) were obtained after a month.

Crystal data

$\left[\mathrm{Cu}_{2} \mathrm{Br}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}_{2}\right)_{2}\right]$	$Z=2$
$M_{r}=696.97$	$D_{x}=2.450 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation
$a=12.102(3) \AA$	$\mu=10.73 \mathrm{~mm}^{-1}$
$b=10.054(3) \AA$	$T=298(2) \mathrm{K}$
$c=7.767(2) \AA$	Prism, red
$\beta=90.962(4)^{\circ}$	$0.15 \times 0.12 \times 0.06 \mathrm{~mm}$
$V=944.9(4) \AA^{3}$	

Data collection

Bruker SMART APEX CCD area-	4667 measured reflections
\quad detector diffractometer	1664 independent reflections
φ and ω scans	1391 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.081$
$\quad(S A D A B S ;$ Sheldrick, 1996)	$\theta_{\max }=25.0^{\circ}$
$T_{\min }=0.296, T_{\max }=0.565$	
$\quad($ expected range $=0.275-0.525)$	

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$
H -atom parameters constrained
$w R\left(F^{2}\right)=0.153$
$S=1.13$
1664 reflections
110 parameters

Figure 1
The molecular structure of (I), showing the atom-numbering scheme, with Displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (i) $-x+1,-y+1,-z$.]

The H atoms were placed in calculated positions and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for the pyridine ring, and $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl group. The highest peak is located $0.91 \AA$ from atom Br2.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of Shandong Province of China for grant No. Y2005B25.

References

Bruker (1997). SMART (Version 5.6) and SAINT (Version 5.06a), Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Nepveu, F., Haase, W. \& Astheimer, H. (1986). J. Chem. Soc. Faraday Trans. 2, pp. 551-565.
Sheldrick, G. M. (1996). SADABS. Version 2.10. University of Göttingen, Germany.
Shi, J. M., Liu, Z., Sun, Y. M., Yi, L. \& Liu, L. D. (2006). Chem. Phys. 325, 237242.

Watson, W. H. (1969). Inorg. Chem. 8, 1879-1886.

[^0]: © 2006 International Union of Crystallography All rights reserved

